
Beating the System:
Manipulating 16-bit Resources
by Dave Jewell

Although Microsoft would no
doubt like to persuade us that

the days of 16-bit applications are
well and truly over, all the evidence
suggests that 16-bit software devel-
opment is still very much alive and
kicking. Just this last month, I’ve
received no less than five requests
for help with understanding the 16-
bit Windows executable file format,
and particularly how to extract re-
source information from existing
files. OK, I can take a hint!

Why would you want to access
the resource information in an ex-
isting file? There are many reasons
for doing this. Suppose you’re
building an icon editor and you
want to give users the ability to find
and extract icons contained within
Windows DLLs and other execut-
able files. Or maybe you want to
build some utility which allows you
to examine the various forms and
controls used by a particular
Delphi executable? This is easy
once you know how to track down
the resource information inside a
file.

If you’re familiar with the
Windows API, you’ll know that it
contains a number of resource re-
lated routines such as ExtractIcon.
This API call can be used to get an
icon handle to a particular icon
within an executable file. Well,
that’s terrific if it’s icons that
you’re after, but what if you want a
dialog, a bitmap, or a Delphi form?
Rather than needlessly duplicate
the functionality of existing API
routines, the code in this article
will show you how to extract any
type of resource from an existing
NE format file.

The Windows NE
Executable File Format
NE (New-Executable) files use the
16-bit file format which Microsoft
first created for real mode
Windows. I won’t waste time

covering irrelevant details of this
file format, we’ll just concentrate
on the specific information which
you need to track down resource
information within the file. The
first word of any executable file
(whether it be a real-mode DOS ap-
plication, a 16-bit application or a
32-bit application) will always be
set to the value $5A4D (ascii MZ).
This is the magic signature which
DOS uses to identify an executable
file. If the signature isn’t there, the
file is rejected as invalid.

The magic signature is followed
by a real-mode DOS header con-
taining a large number of addi-
tional fields, none of which are
relevant to us as they relate to the
real-mode stub associated with the
file. You need to realise that both
16-bit and 32-bit executables have
a small real-mode stub containing
a DOS program that’s entirely sepa-
rate from the code in the Windows
part of the file. Microsoft did things
this way because in earlier ver-
sions of DOS, running a Windows
program from the DOS command

line resulted in the error message
This program needs Microsoft
Windows or similar. The error mes-
sage wasn’t generated by DOS
(which knew nothing about
Windows when Windows wasn’t
running!) but by the real-mode stub
code itself. Nowadays Windows 95
is smart enough to detect the fact
that you’re running a Windows
application and will automatically
launch it just as if you’d double-
clicked it from within the Explorer.
Nevertheless, the DOS stub code is
still there.

What is of interest is the 32-bit
long word at offset $3C in the file.
This field is used only by Windows
executables: it contains a file-rela-
tive offset that points to another
header contained within the same
file. This header is the one that is
of relevance to the Windows por-
tion of the file. It’s quite a complex
data structure (very complex in the
case of 32-bit files) and again, most
of it isn’t relevant to us. As with the
DOS header, the first word of the
Windows file header is used to

➤ MicroAngelo is one of the best shareware programs for extracting
icons from executables (http://www.impactsoft.com/muangelo/muangelo.html)

May 1997 The Delphi Magazine 41

identify the type of header we’re
dealing with: it contains the value
$454E (ascii NE) in the case of 16-bit
executables and $4550 (ascii PE) for
32-bit Portable Executables. Hav-
ing found the DOS executable sig-
nature at the beginning of the file
and $454E at the location pointed to
by the file offset at location $3C, we
can be pretty sure that we’re
dealing with a 16-bit Windows
executable.

The next step is to determine if
the file contains any resource data.
Once the Windows file header has
been found, the resource table it-
self must be tracked down. The 16-
bit offset of the resource table is
located at byte position $24 within
the Windows file header. This part
of the Windows header file is ar-
ranged as a series of 16-bit offsets
which point to other consecutive
parts of the file. Thus, the size of
the resource table can be deter-
mined by comparing the offset of
the resource table with the offset of
the next part of the file. In my code,
I look to see if the resource table is
greater than four bytes in length. If
it isn’t, then I know it’s empty. This
is because I’ve found by experi-
mentation that if you strip all the
resources out of an executable file
using Borland’s Resource Work-
shop program, it will leave a vestig-
ial 4-byte resource table in the file.
If we assumed that any non-zero
value for the resource table size
indicated the presence of re-
sources, then we might end up in
deep trouble!

Resource Table Format
At this point, we’ve found the re-
source table and we know how big
it is. This would be a good point to
review the format of the resource
table itself. As you’ll no doubt ap-
preciate, a resource is identified by
two things: the resource type, and
the resource ID. Microsoft have de-
fined a number of standard re-
source types such as rt_Cursor,
rt_Bitmap and so forth (you can
find a list of these declarations in
WINTYPES.PAS, or in WINDOWS.PAS
if you’re using a 32-bit version of
Delphi). Delphi applications make
extensive use of the rt_Data re-
source type which corresponds to

an application-specific chunk of ar-
bitrary data. This resource type is
used to store a binary repre-
sentation of all the Delphi form files
used by a program.

The resource table itself is or-
ganised as a series of resource type
identifiers, followed by a count and
then all the resources of that type.
For example, if a file contains five
bitmaps and twelve forms, you
might expect the file to start with
the resource type identifier for bit-
maps, followed by a count of five,
and then the information relating
to the five individual bitmap re-
sources. This would then be fol-
lowed by the resource type
identifier for rt_Data resources, a
count of twelve, and then the infor-
mation relating to each of the
twelve form resources in the file.

Just to make things a little more
interesting, resources can be
named either with a string, or with
a number and the same string/
number system can even be used
when defining resource types. For
example, you can name a resource
as WIDGET or you can give it the
number 10. Inside your application
code, you can refer to a resource
by name or by number. How does
the resource table format cater for
both eventualities? A name or num-
ber is specified by a single 16-bit
word. If the high bit (bit 15) of the
word is set high, then the other bits
of the word specify a number. How-
ever, if the high bit isn’t set, then
the number is a file offset (relative
to the start of the resource table)
which points to a Pascal-style
string.

The ResFile Unit
I could go on and describe the for-
mat of the resource table entries
(the stuff that follows the resource
count for each type of resource),
but let’s lay the theory aside for a
while and look at the actual code,
shown in Listing 1. Although there
was some mileage to be gained by
writing my Shell Link (see Issue 19)
as a component, this isn’t really the
case here, so I’ve manfully resisted
the temptation (!) and left ResFile
as an ordinary Pascal unit.

I’ve encapsulated the mechanics
of ‘resource sniffing’ into a single

object, TResFile. In order to access
the resources in a particular file,
you call the constructor for TRes-
File, passing it the name of the file
you’re interested in. You can then
determine how many different re-
source types are contained in the
file by reading the value of the
ResTypeCount property. For each re-
source type in the file, you can in-
dex into the ResTypes property to
obtain the name of that particular
type. For each type of resource,
you can call GetResourceCount to ob-
tain the number of resources of
that specific type while calling
GetResourceName will give you the
name of an individual resource.
Finally, the GetResourceInfo routine
will provide important details re-
lating to a specific resource such as
its size in bytes, the byte offset of
the resource within the file and any
flags associated with the resource.
(See the Windows SDK documenta-
tion for a description of the differ-
ent flags that relate to a resource).

Bear in mind that Windows
doesn’t store the exact size of indi-
vidual resources. Instead, it uses a
special ‘shift count’ (stored as part
of the resource table) to calculate
the reported resource size and po-
sition. For example, suppose that
this shift count has a value of four.
In this case, the value for the re-
source’s size and position (as
found in the resource table) will be
shifted left four places before being
returned. If the actual size of a re-
source is $1234 bytes, the stored
value will be $124 and a value of
$1240 will be returned. Thus, re-
source sizes will always be
rounded up to the next highest
multiple of 16 (assuming a shift of
4) and resource file positions will
always be aligned on 16-byte file
boundaries. You might wonder
why Microsoft implemented such a
bizarre scheme. The reason is sim-
ply that it enables a lot of (poten-
tially large) resources to be
represented in a compact manner.

One other point about the inter-
face to TResFile: I’ve added a
Boolean property called ResMap-
Names. This maps the standard

➤ Facing page: Listing 1

42 The Delphi Magazine Issue 21

unit ResFile;
{ Implementation of TResFile. This version 16-bit (NE) only.
 Author: Dave Jewell, 1996-1997, ALL RIGHTS RESERVED. }
interface
uses WinTypes, WinProcs, Classes, SysUtils;
const
 { Magic numbers }
 DOS_Magic = $5A4D; { Magic word for old-style DOS EXEs }
 W16_Magic = $454E; { Magic word for new-style 16-bit EXEs }
 eFileNotFound = ’File % not found’;
 eFileNotExe = ’File % is not an executable’;
 eFileNotNE =
 ’File % is not a Windows 16-bit (NE) executable’;
type
 EResFile = class (Exception);
 PResInfo = ^TResInfo;
 TResInfo =
 record
 ROffset: LongInt; { Offset of resource data }
 RLength: Word; { Length of resource data }
 RFlags: Word; { Flags for this resource }
 end;
 TResFile = class (TObject)
 private
 fName: String;
 fMapNames: Boolean;
 fHeaderPos: LongInt;
 fTypesList: TStringList;
 procedure Panic(const Message: String);
 function MapResNumToString(const Name: String): String;
 function MapStringToResNum(const Name: String): String;
 function GetResList(const TypeName: String): TStringList;
 function GetTypeName (Index: Integer): String;
 function GetResourceTypeCount: Integer;
 public
 constructor Create (const FileName: String);
 destructor Destroy;
 property ResTypeCount: Integer read GetResourceTypeCount;
 property ResTypes[Index: Integer]: string
 read GetTypeName;
 property ResMapNames: Boolean
 read fMapNames write fMapNames;
 function GetResourceCount(const TypeName: String):
 Integer;
 function GetResourceName(const TypeName: String;
 Idx: Integer): String;
 procedure GetResourceInfo(const TypeName: String;
 Idx: Integer; var Info: TResInfo);
 end;
implementation
constructor TResFile.Create (const FileName: String);
var
 fs: TFileStream;
 ResShift, ResTablePos, ResTableSize: Word;
 function ReadByte: Byte;
 begin
 fs.Read (Result, sizeof (Result));
 end;
 function ReadWord: Word;
 begin
 fs.Read (Result, sizeof (Result));
 end;
 function ReadLong: LongInt;
 begin
 fs.Read (Result, sizeof (Result));
 end;
 function ReadString: String;
 var
 Idx, i: Word;
 OldPos: LongInt;
 begin
 Idx := ReadWord;
 if Idx = 0 then
 Result := ’’
 else if (Idx and $8000) <> 0 then
 Result := Format (’#%d’, [Idx and $7FFF])
 else begin
 OldPos := fs.Position;
 fs.Position := fHeaderPos+ResTablePos+Idx {-Ord(fType)};
 Result [0] := Char (ReadByte);
 for i := 1 to Ord (Result [0]) do
 Result [i] := Char (ReadByte);
 fs.Position := OldPos;
 end;
 end;
 function ReadResourceList: Boolean;
 var
 ResType: String;
 i, Count: Integer;
 Res: ^TResInfo;
 List: TStringList;
 begin
 Result := False;
 ResType := ReadString;
 if ResType <> ’’ then begin
 Result := True;
 List := TStringList.Create;
 { Count number of resources of this type }
 Count := ReadWord; ReadLong;
 for i := 0 to Count - 1 do begin

 GetMem (Res, sizeof (TResInfo));
 Res^.ROffset := LongInt (ReadWord) shl ResShift;
 Res^.RLength := ReadWord shl ResShift;
 Res^.RFlags := ReadWord;
 List.AddObject (ReadString, TObject (Res));
 ReadLong;
 end;
 fTypesList.AddObject (ResType, List);
 end;
 end;
 procedure ReadResources;
 var ResType: Word;
 begin
 with fs do begin
 { Get the size and position of the resource table }
 Position := fHeaderPos + $24; ResTablePos := ReadWord;
 ResTableSize := ReadWord - ResTablePos;
 { Stripping all resources with RW leaves 4-byte table }
 if ResTableSize > 4 then begin
 Position := fHeaderPos + ResTablePos;
 ResShift := ReadWord;
 while ReadResourceList do ;
 end;
 end;
 end;
begin
 fName := FileName;
 fMapNames := False;
 fTypesList := TStringList.Create;
 if not FileExists (FileName) then
 Panic (eFileNotFound);
 fs := TFileStream.Create (FileName, fmOpenRead);
 with fs do
 try
 if ReadWord <> DOS_Magic then
 Panic (eFileNotExe);
 Position := $3C;
 Position := ReadLong;
 fHeaderPos := Position;
 if ReadWord <> W16_Magic then
 Panic (eFileNotNE);
 { We know it’s NE executable, load what we’re after }
 ReadResources;
 finally
 fs.Free;
 end;
end;
destructor TResFile.Destroy;
var
 j: Integer;
 TypeList: TStringList;
begin
 while fTypesList.Count > 0 do begin
 TypeList := TStringList (fTypesList.Objects [0]);
 for j := 0 to TypeList.Count - 1 do
 FreeMem (TypeList.Objects [j], sizeof (TResInfo));
 TypeList.Free;
 fTypesList.Delete (0);
 end;
 fTypesList.Free;
end;
procedure TResFile.Panic (const Message: String);
var
 p: Integer;
 Str: String;
begin
 p := Pos (’%’, Message);
 if p = 0 then
 Str := Message
 else
 Str := Copy(Message, 1, p - 1) + ’"’ + fName + ’"’ +
 Copy(Message, p + 1, 255);
 raise EResFile.Create (Str);
end;
function TResFile.GetResourceTypeCount: Integer;
begin
 Result := fTypesList.Count;
end;
function TResFile.MapResNumToString(
 const Name: String): String;
begin
 Result := Name;
 if (Result [1] = ’#’) and fMapNames then
 case StrToInt (Copy (Result, 2, 255)) of
 1: Result := ’CURSOR’;
 2: Result := ’BITMAP’;
 3: Result := ’ICON’;
 4: Result := ’MENU’;
 5: Result := ’DIALOG’;
 6: Result := ’STRINGTABLE’;
 7: Result := ’FONTDIR’;
 8: Result := ’FONT’;
 9: Result := ’ACCELERATOR’;
 10: Result := ’RCDATA’;
 12: Result := ’GROUPCURSOR’;
 14: Result := ’GROUPICON’;
 16: Result := ’VERSIONINFO’;
 end;
end;
 { ** CONTINUED ON NEXT PAGE ——>> }

May 1997 The Delphi Magazine 43

resource type names (and only the
standard names) into a human
readable form. Thus, if you have
ResMapNames set to True, the BITMAP
type will be returned as the string
BITMAP. If the name mapping prop-
erty is False then you’ll just see it
identified as #2.

Most of the work is done in the
constructor for TResFile. Having
verified that we’re dealing with a
16-bit Windows executable (see
previous explanation) and that the
file contains resources, the ReadRe-
sourceList routine is called once
for each encountered resource
type. When it reaches the end of
the resource list, this function re-
turns False, otherwise it returns
True. Assuming another set of re-
sources are found, the code cre-
ates a new TStringList object and
loops for as many times as are indi-
cated by the resource count word,
reading successive resource de-
scriptions into memory, storing
them in a small data structure of
type TResInfo, and adding them to
the string list.

You’ll see from the code that
each resource description consists
of a word describing the file offset
which has to be shifted left as de-
scribed earlier. This is followed by
a word giving the length of the re-

source which has to be shifted left
in the same manner. Next comes a
word containing resource flags and
finally, a 16-bit word which is used
to specify the number or name of
the resource. You’ll also see from
the code that I then read and dis-
card a 32-bit long value. This isn’t
used inside the file but is reserved
for operating system usage (the

Windows kernel loads the 12-byte
data structure relating to each re-
source and uses this last field as a
memory handle pointing to the in-
memory resource data).

Right, let’s see if it works as ad-
vertised. The screenshot shows a
small program I developed that
uses the ResFile unit. The source
code is given in Listing 2. It allows

{ ** CONTINUED FROM PREVIOUS PAGE }
function TResFile.MapStringToResNum(
 const Name: String): String;
var Num: Integer;
begin
 Num := -1;
 if (Name [1] <> ’#’) and fMapNames then begin
 if Name = ’CURSOR’ then Num := 1;
 if Name = ’BITMAP’ then Num := 2;
 if Name = ’ICON’ then Num := 3;
 if Name = ’MENU’ then Num := 4;
 if Name = ’DIALOG’ then Num := 5;
 if Name = ’STRINGTABLE’ then Num := 6;
 if Name = ’FONTDIR’ then Num := 7;
 if Name = ’FONT’ then Num := 8;
 if Name = ’ACCELERATOR’ then Num := 9;
 if Name = ’RCDATA’ then Num := 10;
 if Name = ’GROUPCURSOR’ then Num := 12;
 if Name = ’GROUPICON’ then Num := 14;
 if Name = ’VERSIONINFO’ then Num := 16;
 end;
 if Num = -1 then
 Result := Name
 else
 Result := ’#’ + IntToStr (Num);
end;
function TResFile.GetTypeName (Index: Integer): String;
begin
 Result := ’’;
 if (Index >= 0) and (Index < fTypesList.Count) then
 Result := MapResNumToString (fTypesList.Strings [Index]);
end;
function TResFile.GetResList(
 const TypeName: String): TStringList;
var Idx: Integer;
begin

 Idx := fTypesList.IndexOf (MapStringToResNum (TypeName));
 if Idx = -1 then
 Result := Nil
 else
 Result := fTypesList.Objects [Idx] as TStringList;
end;
function TResFile.GetResourceCount(
 const TypeName: String): Integer;
var List: TStringList;
begin
 List := GetResList (TypeName);
 if List = Nil then
 Result := 0
 else
 Result := List.Count;
end;
function TResFile.GetResourceName(
 const TypeName: String; Idx: Integer): String;
var List: TStringList;
begin
 Result := ’’;
 List := GetResList (TypeName);
 if (List <> Nil) and (Idx >= 0) and (Idx < List.Count) then
 Result := List.Strings [Idx]
end;
procedure TResFile.GetResourceInfo(
 const TypeName: String; Idx: Integer; var Info: TResInfo);
var
 pInfo: PResInfo;
 List: TStringList;
begin
 List := GetResList (TypeName);
 if (List <> Nil) and (Idx >= 0) and (Idx < List.Count) then
 Info := PResInfo (List.Objects [Idx])^;
end;
end.

➤ Listing 1 (continued)

➤ Here’s my demo program peeking at the resources contained in
the Delphi 1 IDE: as a general rule, if a Delphi application has an
RCDATA resource whose name begins with a T then it’s almost
certainly a form resource

44 The Delphi Magazine Issue 21

you to select a 16-bit Windows
executable and then displays a list
of all the available resource types
and names in the two list boxes.

In the screenshot you can see
some of the RCDATA resources in-
side the Delphi 1 executable. No
prizes for guessing that these are
the internal form names used by
the Delphi IDE! Once you’ve se-
lected a resource of interest, you
can double click the resource name
in the right-hand list box and the
program will ask if you want to
extract the selected resource. If
you answer yes, then it will create
a new binary file containing the
data for that resource.

unit Mainform;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, ResFile, StdCtrls;
type
 TForm1 = class(TForm)
 Types: TListBox;
 TypeCount: TLabel;
 ResList: TListBox;
 ResCount: TLabel;
 ResSize: TLabel;
 ResOffset: TLabel;
 ResFlags: TLabel;
 Button1: TButton;
 OpenDialog: TOpenDialog;
 procedure FormClose(
 Sender: TObject; var Action: TCloseAction);
 procedure TypesClick(Sender: TObject);
 procedure ResListClick(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure ResListDblClick(Sender: TObject);
 private
 rf: TResFile;
 public
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormClose(
 Sender: TObject; var Action: TCloseAction);
begin
 rf.Free;
end;
procedure TForm1.TypesClick(Sender: TObject);
var
 Count, Idx: Integer;
 ResType: String;
begin
 if (rf <> Nil) and (Types.Items.Count > 0) then begin
 ResList.Clear;
 ResType := Types.Items [Types.ItemIndex];
 Count := rf.GetResourceCount (ResType);
 ResCount.Caption :=
 IntToStr(Count) + ’ Resources of Selected Type:’;
 for Idx := 0 to Count - 1 do
 ResList.Items.Add (rf.GetResourceName (ResType, Idx));
 ResList.ItemIndex := 0;
 ResListClick (Self);
 end;
end;
procedure TForm1.ResListClick(Sender: TObject);
var Info: TResInfo;
begin
 if rf <> Nil then begin
 rf.GetResourceInfo(Types.Items[Types.ItemIndex],
 ResList.ItemIndex, Info);
 ResSize.Caption := ’Size of Resource = $’ +
 IntToHex(Info.RLength, 4) + ’ bytes.’;
 ResOffset.Caption := ’File Offset of Resource = $’ +
 IntToHex(Info.ROffset, 8) + ’ bytes.’;
 ResFlags.Caption := ’Resource Flags = $’ +
 IntToHex(Info.RFlags, 4) + ’.’;
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var Count, Idx: Integer;
begin
 ResList.Clear;
 Types.Clear;
 if rf <> Nil then rf.Free;
 if OpenDialog.Execute then begin
 try
 rf := TResFile.Create (OpenDialog.FileName);
 rf.ResMapNames := True;
 Count := rf.ResTypeCount;
 TypeCount.Caption := IntToStr(Count) +
 ’ Resource Types:’;
 for Idx := 0 to Count - 1 do
 Types.Items.Add (rf.ResTypes [Idx]);
 Types.ItemIndex := 0;
 TypesClick (Self);
 except
 Application.HandleException (Self);
 end;
 end;
end;
procedure TForm1.ResListDblClick(Sender: TObject);
var
 Info: TResInfo;
 ResData: Pointer;
 ResIndex: Integer;
 fs: TFileStream;
 TypName, ResName, fName: String;
begin
 with rf do begin
 ResIndex := ResList.ItemIndex;
 TypName := Types.Items [Types.ItemIndex];
 ResName := ResList.Items [ResIndex];
 if MessageDlg(Format(
 ’Extract resource ’’%s’’ (type = ’’%s’’) ?’, [ResName,
 TypName]), mtConfirmation, [mbYes, mbNo], 0) = idYes
 then begin
 GetResourceInfo (TypName, ResIndex, Info);
 GetMem (ResData, Info.rLength);
 try
 fs := TFileStream.Create(OpenDialog.FileName,
 fmOpenRead);
 try
 fs.Position := Info.rOffset;
 fs.Read (ResData^, Info.rLength);
 finally
 fs.Free;
 end;
 fName := ExtractFilePath(Application.ExeName) +
 ResName + ’.BIN’;
 fs := TFileStream.Create (fName, fmCreate);
 try
 fs.Write (ResData^, Info.rLength);
 MessageDlg(’Resource has been written to ’ +
 fName, mtInformation, [mbok], 0);
 finally
 fs.Free;
 end;
 finally
 FreeMem(ResData, Info.rLength);
 end;
 end;
 end;
end;
end.

➤ Listing 2

If, like me, you enjoy poking
around in Delphi’s innards, then
you might be especially interested
in the MODULES resource inside
Delphi 1. Although this is an RCDATA
resource, it’s not a form. If you ex-
tract it, rename it as a text file and
then open it, you’ll find that it’s
actually a set of templates used by
Delphi when creating units and
DPR files. Ever wondered where all
those skeletal class definitions
come from? Look no further!

Here’s one thing that might dis-
appoint you: if you extract an icon,
cursor or bitmap resource and
then rename it to have the appro-
priate extension, you’ll find that it
isn’t recognised by ordinary
resource editors. That’s because

.ICO, .CUR and .BMP files have an
additional ‘file wrapper’ that al-
lows them to be recognised by utili-
ties such as MicroAngelo. Next
month, I’ll explain how to extract
resources into these industry
standard file formats and extend
our ResFile unit for 32-bit files too.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJewell
@aol.com or as DaveJewell@
compuserve.com

May 1997 The Delphi Magazine 45

	The Windows NE Executable File Format
	Resource Table Format
	The ResFile Unit

